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Quadratic splines are generated which interpolate a function and its derivative
at points midway between alternate pairs of knots, and the error bOlmd is shown
to be precisely of order h2 rather than h3 as expected. This result is related to best
constrained approximation by splines and thence to Galerkin methods for
constrained· problems.

I. INTRODUCTION

Galerkin or Rayleigh-Ritz methods have become very popular again for
the solution of various practical problems posed as an equation, variational
equality, or the lozation of a point x* minimizing some functional! over
some linear space X (Schultz [16], Strang-Fix [19]). In this last setting, for
example, one approximates x* by a point X n * minimizing! over some linear
space X n of approximations. In many specific cases and in fair generality, it
can be shown that the error between X n * and x* is of the same order as the
error in best approximation of x* by elements of X n ; one then applies results
from approximation theory to give a priori error bounds on x* - X n *.

More recently, attempts have been made, with some success, to extend the
above-mentioned methods and results to more general problems posed as a
variational inequality or as the location of a point x* minimizing a functional!
over a convex subset C of a linear space X (Aubin [1], Bosarge et al. [5,6],
Daniel [9], Falk [11), Mosco-Strang [14], Strang [17, 18]). Again, in this latter
setting, one approximates x* by X n *minimizing!over some convex subset en
of a linear space X n of approximations. In a very limited number of cases it
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has been shown that the error x* - x n * is of the order of the sum of the
best approximation errors of x* by elements of en (not Xn) and of X n* by
elements of C. For use now in these cases and, hopefully, later in more
generality, one therefore desires approximation-theory results on the order
of the error in these constrained best approximations for various useful
approximating spaces X n .

It is this interest in the Galerkin method for constrained problems that
leads us in this paper to consider a problem involving constrained best
approximation by spline functions. Some results in this direction have been
presented or discussed by Strang (Strang [17, 18], Mosco-Strang [14]). In
line with his approach, we consider the approximation on [0, 1] of a non­
negative function/from below by nonnegative splines s; thus s is constrained
to satisfy 0 :s;; set) :s;; jet) for 0 :s;; t :s;; 1 and We wish to bound the least error
/ - s. Under the partial order -< defined by S1 -< S2 if and only if S1(t) :s;; slt)
for all t in [0, 11, it is natural to consider a maximal spline s* subject to
0-< s* -< fIn LlO, 1) it is clear that a constrained best approximation must
be maximal, while in C[O, 1] it is clear that, given a cOillitrained best approxi­
mation S, one can find a maximal constrained best approximation s*
satisfying s -< s*; this is why we say the consideration of maximal splines is
"natural." Strang has shown (Strang [17,18], Mosco-Strang [14]) that a
maximal first degree spline (piecewise linear polynomial) approximates
reasonable functions / to the optimal order of best unconstrained approxi­
mation; one simply deduces that for s* to be maximal it must interpolate the
values of / (and also of its derivative) at a certain set of points, enough to
allow one to use results on piecewise linear interpolation errors in order to
derive the desired bounds.

When we consider the use of splines of degree greater than one, the picture
changes somewhat. Certainly if s* is maximal and if B is any nontrivial
nonnegative spline then we cannot have s* + >..B -< / for any postive >..;
this usually allows us to conclude that s* interpolates/at some ponits in the
support of B. By choosing for B the extreme points of the cone of nonnegative
splines (Burchard [7]), we can indeed conclude that a maximal spline s*
must interpolate/(and its derivative) at a large number of points distributed
rather uniformly over [0, 1]. Following the line of the argument for splines
of degree one, we would next expect to quote some known results on the
accuracy of spline interpolation to give bounds on our best constrained­
approximation error; unfortunately such error estimates do not appear to be
known (except in very special cases not applicable here (Varga [21])). The
difficulty is that the interpolation points, while distributed evenly throughout
[0, 1], .need not fall at the spline's knots or at other special points for which
the resulting error bounds are known; in addition, our case involves Hermite
interpolation (that is, for both / and 1') with very smooth splines (say
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continuously differentiable quadratics) rather than with the rougher splines
usually associated with Hermite interpolation. Thus we are led to consider
the question of the accuracy of Hermite interpolation by very smooth splines
at various points in [0, 1].

To study the Ga1erkin method for constrained problems one naturally then
can consider a sequence of related questions: (1) What is the order of the
error in constrained best approximation by splines? (2) What is the order of
the error in approximation by maximal splines? (3) What is the order of the
error in approximation by smooth splines interpolating f and r at various
points? The results of this paper are essentially "negative" results relating
to questions (2) and (3). We show in Section 2 that an Hermite interpolation
using reasonable interpolation points and smooth splines of degree two
(piecewise quadratic polynomials) leads to second-order accuracy rather than
third-order as usually (de Boor [2]) associated with second-degree splines;
such behavior is somewhat unexpected (Cox [8]). In Section 3 we exhibit
a maximal second-degree spline approximation which also has an error of
second order rather than the expected third order. We have not, however,
been able to show that the best constrained-approximation error by second­
degree splines is of second order; our results merely indicate that one cannot
extend Strang's maximal-spline arguments in order to prove third-order
accuracy. Some experimental computational results seem to indicate that the
errors are indeed of third order.

For the convenience of the reader, the extremely tedious details of our
computations of the errors described above have been placed in the Appendix
rather than in the main body of the paper. Another approach to these
examples will appear in de Boor [4].

2. INTERPOLATION SCHEMES FOR SECOND-DEGREE SPLINES

We consider second-degree splines s in Cl[O, 1] with uniformly spaced
knots at ti = ih for 0 ~ i ~ N, where h = IjN. Although there are a
variety of ways to represent (and solve for) s, we choose to represent s as
s = L:-l aiBi in terms ofthe B-splines {Bi}~l . The B-spline Bi is nonnegative
and is given by

Bi(x) = 0 for x ~ (i - l)h

= (lj2h2)[x - (i - l)h]2 for (i - l)h ~ x ~ ih

= {lj2h2)[x - (i - 1)h]2 - (3j2h2)[x - ih]2 for ih ~ x ~ (i + J)h

= (Ij2h2)[x - (i + 2)h]2 for (i + 1)h ~ x ~ (i + 2)h

= 0 for (i + 2)h ~ x.
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In particular, we have the following values for Bi and B/:

x (i -"I) h (i - t) h ih (i + t) h (i + 1) h (i + iD h (i + 2) h

Blx) 0 i 1. i 1. 1

°2 2 8

B/(x) °
1 I

0
I I

°2h 71 -71 - 2h

Since Bi is nonnegative and L:-l Bi(x) == 1, it follows easily that II s IL", =
II L:-l aiBi II", ::s:; maxi I ai III L:-l Bi II = II(a-1 , ao , ... , aN)II",; it is also
trivial to see that lis' liro ::s:; (2jh) II(a-1 , ao ,... , aN)II",. When analyzing an
interpolation scheme, as usual (de Boor [3]) we notice that it defines a linear
projection IlN from Cr[O, 1] into a spline subspace SN of CP[O, 1],
and then we use Lebesgue's inequality to estimate II IlNf - fll =
II IlNf - IlNs + s - fll = II(IlN - 1)(1 - s)11 ::s:; II IlN - Illllf - s Ii for all s
in SN ; thus II IlNf - fll is no larger than II IlN - III ::s:; 1 + II IlN II times the
(usually known) error of best approximation by elements of SN , and we need
only estimate Ii IlN II. In practize the interpolation is usually defined in terms
of the B-spline coefficients a-I"", aN by a system of equations ANa = PN/'
where aT = (a-I, ... , aN) andPN mapsfinto the vector of interpolated values
and is uniformly bounded, for example, with II PN II ::s:; 1. Then we have
II IlNfll", = II L:-l aiBi Ii", ::s:; II a II", = !I A~IPNfil", ::s:; II A~III", Ilfll and we
need only bound II A~lllco. Such estimates will form the heart of our
subsequent analyses.

Now we move on to consider interpolation in our (N + 2)-dimensional
space of splines of degree two. It is well known (de Boor [2]) that for f in
C3[0, I] the error of best approximation is of the order of h3 and, more
precisely, that Ilf - s liro + h 11f' - s' II", = (I)(h3) for some spline s; our
concern here, however, is with the errors resulting from interpolation schemes
with various patterns of interpolation points, for which the problems of
existence and uniqueness of the interpolants are well understood
(Schoenberg-Whitney [15]), but for which the problems of sharp error
bounds have been less thoroughly treated. In fact, the relationships among
the pattern of interpolation points, the placement of knots, the smoothness
of the interpolated function, and the resulting errors are quite subtle. The
quadratic spline Q interpolating the values of f at ti = ih for °::s:; i ::s:; N
and of f' at to = 0, for example, satisfies Ilf - Q II", ::s:; const X h-1 X

Ilf - s II", for all quadratic splines s, so that Ilf - Q II", = (I)(h2) for fin C3[0, 1]
rather than Ilf - Q II", = (I)(h3) as expected. If f is still smoother, however,
arguments more subtle than use of Lebesgue's inequality can be used to show
that Ilf - Q lioo is in fact of third order in h. Our justification of this last
assertion, apparently first made by Daniel [10], was by tedious direct compu­
tations similar to those in this present paper; since this result is not central
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to the present work, however, and since a much more concise and thorough
treatment will appear in de Boor [4], where the bound - Q -:(
const x 113 X [llf(3) 1100 + Var(f<3))] is derived, we pursue this no further
now.

In contrast to the complex situation above for interpolation at the knots,
the simple scheme (Subbotin [20]) of interpolating the values of I at the
points t = 0, t = (i + t)h for 0 -:( i -:( N - I, and t = 1, however, yields
IiI - Q -:( const X lif - S for all splines S so that the error is of order h3

rorfin C3 [0, 1], for example (Marsden [13], Kammerer~Reddien~Varga [12]).
Recall, however, that our motivation in Section 1 for studying interpolation
schemes concerned maximal splines S -< f, so that s' andl' must agree when­
ever s andfdo. We naturally wonder therefore what errors result from such
Hermite interpolation at various points such as the knots or the midpoints in
comparison with what we have described above for simple Lagrange inter­
polation with these patterns of points; of course, to avoid demanding too
much of our (N -+- 2)-dimensional space, we can perform our Hermite
(double) interpolation at only about half as many points as for simple
Lagrange interpolation.

First, to show that we can get good error bounds via Hermite interpolation
with our smooth splines rather than the rougher splines usually associated
with Hermite interpolation, we show that an error of the optimal order h3

results from the simple scheme of Hermite interpolation at every other knot.
To see this, suppose that N = 2M and that we require the 2(A'! + J) =
N + 2 conditions s(2ih) - f(2ih) = s'(2ih) - 1'(2ih) for i = 0, 1, ... , M.
This, in fact, defines a purely local scheme in that the values of sex) for
2il1 -:( x ~ (2i + 2)11 are determined only by f and l' at 2ih and (2i + 2)h.
The conditions at 2ih require (1/2) G2H + (1/2) G27 = f(2ih) and
~(llh) G2i-l + Olh) G2i = f'(2ih) so that G2i-l = f(2ih) - h1'(2ih),
a2i = f(2ih) + (1/2) h1'(2ih). From this we can easily find the order of the
error. We know that for fin C3[O, 1] there is some quadratic spline So such
that il So - flloo = (!J(h3

) and !I so' - l' !!oo = (!J(h 2), so that ,I So - F =

where II g Ii == II g 1100 + h II g' . Therefore, as we saw at the start of this
section, our interpolation scheme gives an error il s ~ -:( (1 + lIN [I) .
(!J(h3

) where lIN is the projection defined by our scheme. From the above
formulas for G2i and a2i- 1 we see that i[(a-I , ao ,... , -:( +
0/2)h I[f' ~ ilfli; since Ii s -:( i'(a-I , ao ,... , and I s' -:(
(2111) l(a-1 , ao ,.", aN)iloo, we have II sl ~ 3 "(a-I' ao ,... , GN)lioo and hence
JI s = II lINfl1 ~ 3 Uli. Therefore, for f in C3[O, 1], our Hermite inter­
polation scheme at alternate knots comes within a multiple of three of
obtaining best approximation error, and in particular approximates I to
(!J(h3) and f' to (!)(h 2) accuracy. This accuracy should be compared with the
accuracy of order h2 obtained from simple interpolation at the knots for f
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merely known to lie in C3 [0, 1]. To obtain the higher optimal order accuracy
h3 from simple interpolation we needed either to have a smoother function!or
to shift the interpolation points to midway between the knots; we will next
show that for Hermite interpolation, however, this shift to the midpoints
yields only accuracy of order h2, and that this does not improve for smoother
functions. It would be interesting to know precisely when the optimal errors
occur in terms of the smoothness of J, the pattern of the knots, and the
pattern and multiplicities of the interpolation points; some results in this
direction, including discussions of our present examples from the different
viewpoint of de Boor [3], will be found in [4].

We now consider Hermite interpolation at midpoints rather than knots;
the question arises as to precisely how to do this. If, for example, N = 2M
is even, then we might interpolate twice at each of the M points (2i + t)h
for 0 ~ i ~ M - 1; the two remaining degrees offreedom could be specified
by interpolation also at the endpoints zero and one. On the other hand, if
N = 2M + 1 is odd, then we might interpolate twice at each of the M + 1
points (2i + t)h for 0 ~ i ~ M; the one remaining degree of freedom might
be specified by interpolation at one endpoint.

To allow us to consider both the above cases and a later generalization at
once, we suppose that N = 2M + 1 and that we interpolate twice at each
of the M points (2i + t)h for 1 ~ i ~ M, leaving three degrees of freedom.
If we further interpolate twice at th and once at 0 or 1 we get the second case
above; however, if instead we further interpolate twice at th, once at each 0
and 1 - h, and not at (2i + t)h for i = M, and only consider the interval
[0, 1 - h] we get the first case above.

We now try to find the B-spline coefficients for the above interpolation
scheme. From s«2i + t)h) = gi == f«2i + t)h) for a given function! for
1 ~ i ~ M, we obtain a2HG) + a2i(!) + a2i+1G) = gi, while from
s'«2i + t)h) = g/ = 1'«2i + t)h) for 1 ~ i ~ M, we obtain a2i-l(-1/2h) +
a2i(0) + a2i+l(l/2h) = g/. We think of a-I' ao , and al as representing our
three degrees of freedom and then try to solve for aj for 2 ~ j ~ N in terms
of a_I' ao , and GI . From a2i+1 = a2i- 1 + 2hg/ for 1 ~ i ~ M, we trivially
obtain

i

a2i+l = al + 2h L g/
j~1

for 1 ~ i ~ M. (2.1)

Substituting Eq. (2.1) into the relation a2H + 6a2i + a2i+1 = 8gi obtained
above for 1 ~ i ~ M yields

for 1 ~ i ~ M. (2.2)
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If, as in the case above for Hermite interpolation at every other knot, we
define Ilfil = [Ifl[oo + h [I f' lioo , it follows easily from Eqs. (2.1) and (2.2) that
Ii(a-l ,..., aN)[ioo ~ [i(a-l , ao, al)il", + (i + h-l) l[f[l. If we choose a complete
interpolation scheme for which [i(a-l , ao , al)iloo ~ (el c2h-l ) lifli for some
constants Cl and c2 , then we will have bounded the norm Ii lIN II for our
projection by (!}(h-l ) and would therefore conclude that our spline interpolant
has at least second-order accurate function values rather than third as
expected. In fact, if we complete our scheme by interpolating twice at 0/2)11
and once at 0 we find al = a-I + 2hf'(0/2)h), ao = -(1/3) a-I +
(4/3)f«(1/2)h) - (h/3)f'«(1/2)h), and a_I = 3f(0) - 2f«1/2)h) + (h/2)f'«1/2)h)
so that [!(a_1 , ao , al)ll", ~ 7 !ifII as desired; if we complete our scheme by
interpolating twice at (1/2)h, once each at 0 and 1 - 11, and not at
(2i + (1/2))h for i = M, and then consider the approximation on [0, 1 ~ h],
we of course find the same formulas for a-I, ao , a l , but the formula for a2nt

changes slightly, yielding II(a-l , ao , al)ll", + (2 + 11-1) Ilf[l. A tedious
calculation in the Appendix shows that for the function f(t) = t 3 the (!}(h2)

error estimates are sharp in that for each of these interpolation schemes we
have Ilf - s ?: ch2 for some c > 0.

We summarize these results.

THEOREM 2.3. For N = 2M + 1 let s be a quadratic spline with knots at ih
for 0 ~ i ~ N and satisfying s«2i + t)h) - f«2i + t)h) = s'«2i +~)h) ­
f'«2i + t)h) = Ofor 0 ~ i ~ M with (2M + l)h = 1. A unique such spline s
exists also satisfying s(O) = f(O) [alternatively, s(l) = f(l)] and then we have
II s - + h Ii s' - f' ~ «25/3) + h-l)[[1 a - f,loo + h II a' - f' for
all quadratic splines a on this uniform mesh; in particular, iff is in C3[O, 1],
then Ilf - s [i", = (!}(h2), ilf' - s' II", = (!}(h). This bound is sharp in that, for
the function f(x) == x 3 [alternatively, f(x) = (1 - x)3], there is a c > 0 such
that il s - fl[oo ?: ch2 for small h no matter what value is chosen for the free
parameter s(O).

THEOREM 2.4. For N = 2M let s be a quadratic spline with knots at ih for
o ~ i ~ N and satisfying s«2i + t)h) - f«2i + t)h) = s'«2i t)h) ­
1'«2i + t)h) = 0 for 0 ~ i ~ M - 1 with 2Mh = 1. A unique such spline s
exists also satisfying s(O) - f(O) = s(1) - f(l) = 0, and we then have
II s - + h Ii s' - f' 1100 ~ (9 + 2h-l)[[1 a - flloo + h II a' - l' 1100] for all
quadratic splines a on this uniform mesh; in particular, iff is in C3[O, 1], then
i[f - s = (!}(h 2) and II f' - s' II = (!}(h). This bound is sharp in that for the
function f(x) == x 3, there is a c > 0 such that Ilf - s ?: ch2 for small h.
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3. AN @(h2)-AcCURATE MAXIMAL QUADRATIC SPLINE

As indicated in Section 1, it is of considerable interest to understand the
error in approximation by maximal splines. That is, if a nonnegative function!
is given on [0, 1] and if So is a spline satisfying°~ so(x) ~ f(x) on [0, 1] such
that so(x) ~ sex) ~ f(x) on [0, 1] for a spline S implies So = s, then what is
the order of the error f - so? We consider a special case of this problem.

Let f(x) = x 3, let N = 2M + 1, and consider the above question for
maximal quadratic splines So with knots at ih for °~ i ~ N, where h = liN.
As mentioned in Section 1, one might hope that II SO - fli", = @(h3), thus
showing that constrained best approximation in this case gives the same order
of error as unconstrained best approximation; we show in this section that
in fact one need not have II SO - fii", = @(h3).

On the interval [0, h], So is a quadratic polynomial and must satisfy°~ so(x) ~ x3; clearly then so(x) = °in [0, h] and therefore we must have
a-I = ao = aI = 0 in the B-spline representation so(x) = L:-I aiBi(x).
We now consider a specific spline So which we will show to be maximal:
Let So be that unique quadratic spline with a_I = ao = aI = °and satisfying
so((2i + t)h) - f((2i + t)h) = so'((2i + t)h) - f'((2i + t)h) = ° for 1 ~
i ~ M. From our work in Section 2 we know that Eqs. (2.1) and (2.2) are
valid. Since aI = °andf(x) = x3

, we obtain

i

a2i+I = 6h3 I (2j + t)2
j~I

for 1 ~ i ~ M, (3.1)

i-I

a2i = th3(2i + t)3 - h3(2i + W - 2h3 L (2j + W
j~I

for 1 ~ i ~ M.

(3.2)

In the Appendix we show that this leads immediately to the following result.

LEMMA 3.3. Let So be the quadratic spline constructed above interpolating!
Then f(1) - so(1) = (1/12) h2 + (17/24) h3 and lif - So II", is precisely of
order h2 as h tends to zero.

By using the explicit representations of So in each interval, we also show
in the Appendix that the following holds.

LEMMA 3.4. Let So be the quadratic spline constructed above interpolating!
Then for all x in [0, 1] we have 0 ~ so(s) ~f(x).

Finally we show that So is a maximal spline. For if s is a spline satisfying
so(x) ~ sex) ~ f(x) for all x, then (so - s)(x) = 0 for x in [0, h] and
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(so - s)«2i +- t)h) = (so - s)'(2i +- t)h) = 0 for 1 ~ i ~ M. It follows
then from Eqs. (2.1) and (2.2) that all the B-spline coefficients of So - s must
vanish; hence So = :\' and So is maximal. We summarize

THEOREM 3.5. Letf(x) = x 3 on [0, 1]. Let So be the unique quadratic spline
with knots at ih for 0 ~ i ~ N such that so(x) = 0 for s in [0, h) and
so«2i +- t)h) - f«2i +- t)h) = so'«2i +- t)h) - 1'«2i +- t)h) = 0 for 1 ~
i ~ M, where N = 2M +- 1 = Ilh. Then, with respect to the partial order-<,
So is a maximal spline in the set of splines s satisfying 0 -< s -< f, where
SI -< S2 if and only if SI(X) ~ S2(X) on [0, 1], and Ii! - So is precisely of
order h2 as h tends to zero.

This result then shows that a maximal spline need not give an error of the
order of best unconstrained approximation. We have not been able to discover,
however, whether or not best constrained-approximation error is of the same
order as for unconstrained approximation.

ApPENDIX

Here we shall give some of the tedious and uninformative but liseful
computations leading to the conclusions in the earlier sections. First we treat
the lower bounds II s - fll", ;?: ch2 of Theorems 2.3 and 2.4.

Proof of Theorem 2.3. Because of reasons of symmetry we only need
treat the lower bound for the case in which f(x) = x 3• We know that
Eqs. (2.1) and (2.2) hold; the additional condition that seth) - f(th) =
s'H-h) - 1'(t!?) = °gives a_I +- 6ao +- al = 8f(th) and al - a_I = 2h1'(-~h),

from which we then conclude that al = a-I +- 2h1'(!h) and ao = U(!h) ­
J;;h1'cth) - la-I' To evaluate a2i and a2i+l we need to evaluate

n n] 2 n

~ g/ = 3h2 I (2j +- 2:) = 3h2 I (4j2 +- 2j +-
J~l J~1 J~l

= 3h2 )4 . n(n +- 1)(2n +- 1) ..L 2 . 11(11 +- 1) --'- 721
I 6 I 2 4\'

We wish to evaluate
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1 2 2h M~I 5h 1 1 2

= "3 al + "3 gM +"3 .L g/ + 6 gM' ="3 [a_1+ 2h . 3 ("2 h) ]
J~I

~ (1 - ~f + 2h3l4 . (M - 1) ~(2M - 1)

+ 2. (M --; 1) M + M; 1!+ 5: . 3 (1 - ~t

Recalling that h(2M + 1) = 1, so that M = Hh-I - 1), we obtain finally

Since j(l) = 1, we have

s(l) - j(l) = ~ a-I - 1
7
2 h2 + ;4 h3

•

On the other hand,

1
s(O) - j(O) = s(O) = "2 (a_1 + ao)

= ~ (a_1+ ~f(~h) - ~hf' (~h) - ~a_l)

Since Ilf - s liro ;;;0 max{lj(O) - s(O)I, Ij(l) - s(1)I}, we have

(AI)

(A2)

\11 h3111 7 2Ilf - s liro ;;;0 max I "3 a-I - 12 ' "3 a_I - 12 h

This maximum is minimized by letting

(A3)

1 _ 1 [( h
3) (7 h2 7 f 3)]"3 a-I -"2 12 + 12 - 24 1 h - 7 h2 5 h3so t at a_I - "8 - 16 '

and we find that

Ilf - s liro ;;;0 I;4 h2
- ;6 h31 ;;;0 {O h2 for h:O:;; 1. (A4)

This completes the proof of Theorem 2.3.

Proof of Theorem 2.4. We still know that Eqs. (2.1) and (2.2) are valid,
but we now have N = 2M and we only allow 1 :0:;; i :0:;; M - 1. Just as in the
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proof of Theorem 2.3, the interpolation conditions at th give us a1 =
a_I + 2h1'(lh) and ao = Ucth) - ih1'(lh) - ia-I . From Eqs. (2.1) and
(2.2) we have formulas for a 2 , a 3 , ••• , a 2M-2 , a 2M-I in terms of al and hence
in terms of a_I; only a2M remains unrepresented. We settle this easily, since
the condition s(1) = 1(1) = 1 gives !(a2M-I + a 2M) = 1 and hence
a2M = 2 - a2M-I = 2 - al - 2h L~~l g/. Again from the proof of
Theorem 2.3 we know that s(O) = (1/3) a-I - W/12), and so the condition
seQ) = f(O) = 0 finally gives a_I = h3/4. We now proceed to eval~

uate s(1 - (h/2)) - 1(1 - (h/2)) and use the fact that lis - ~

i s(1 - (h/2)) - 1(1 - (h/2))I. We know that

1\[1 4 2h M-2 h -J
= 8 ( - 3 aI + 3gM- I -:3 j~ g/ - 3g ;14-1

[

M-l J [ M-I Jl+ 6 a1 + 2h j~ g/ + 2 - al - 2h j~ g/ \

7 1 7 M-l f . 1 I 1
= 12 al (; gM-I + (; h I gj + 24 hgM - I + 4:

!~I

and we also have al = a_I + 2h1'«1/2)h) = (h3/4) + 2h . 3(h2/4) = (7/4) h3•

Using our formula for L~~Ig/ from the proof of Theorem 2.3, we obtain

( h) 7 (7 3) 1 [( 3)]3 7s 1 - - = - - h + - 2M - - h -I- - h
2 12 4 6 2' 6

. 3h2 \4 . (M - 1)(M)(2M - 1) -I- 2 (M - 1) M + M - 1J
I 6 ' 2 4 \

+ ~4 h . 3 [(2M - ~) h] + ~ .

Recalling that 2Mh = 1 so that M = !h-\ we obtain finally

(1 - ~) = 1 - ~ h -I- 29 h2 -I- 41 h3
s 2. 2 . I 48 I 16 .

We of course have

,( h) (h)3 3 3 h3j 1 - - = 1 - - = 1 - - h -I- - h2 - -
2 2 2 '4 8'

so that

s (1 - ~) - f (1 -~) = -7 h2 -I- 43 h3

2 2 48 '16'

(A5)

(A6)
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and hence

II s - flloo ?: I;8 h2 -1~ h31 ?: 0.1h2 for h ~ 0.01. (A7)

This completes the proof of Theorem 2.4.

Proof ofLemma 3.3. Using Eqs. (3.1) and (3.2) we have

M-l

so(l) = t(a2M + a2M+l) = ih3(2M + W + !1j;h3(2M + t)2 + 2h3 I (2j + w·
j~l

Recalling that (2M + I)h = 1 and using the expression found in the proof
of Theorem 2.3 for the complicated summation, we obtain

2 ( h)3 5 ( h)2s (1) = - 1 - - + - h 1 --
o 3 2 2 2

+ 2h314 . (M - 1) M(2M - 1) + 2 . (M - 1) M + M - 1 I
6 2 4 \

and thence so(I) = 1 - (1/12) h2 - (17/24) h3• Since 1(1) = 1, we obtain
1(1) - so(I) = (1/12) h2 + (17/24) h3 as asserted by the lemma, so that
certainly Ilf - So [100 is at least of order h2

• To see that it is precisely of this
order, we let s be the interpolating spline of Theorem 2.3, with B-spline
coefficients ai ; we know that [I 8 - f[loo = r2(h2), and we will now show that
II 8 - So 1100 = r2(h3) so that II SO - flloo = r2(h2), proving our lemma. To do
this we note that 8 - So = 2::-1 (ai - ai) Bi . From the proof of
Theorem 2.3 we know that 8(0) = (1/3) a_I - (h3/12) = 0, so that a_I = h3/4
and hence, again from that proof, ao = -h3/6 and al = (714) h3• Since
a_I = ao = al = 0, we have a_I - a_I = h3/4, ao - ao = -h3/6, and
al - al = (714) h3 ; since Eqs. (2.1) and (2.2) are valid for both the
ai and the ai, by subtraction we immediately find that a2i - a2i =
-(1/3)(211 - al ) = -(7/12) h3 and a2i+l - a2i+l = al - al = (7/4) h3 for
1 ~ i ~ M. Thus I[ 8 - So 1100 ~ II(a-l - a-I' ao - ao,... , aN - aN)lloo = (7/4)h3

and the proof of Lemma 3.3 is now complete.

Proof of Lemma 3.4. From Eq. (3.2), we have

4 ( 1)3 ( 1)2 i-I ( 1)2
a2i = "3 h3 2i +:2 - h3 2i +:2 - 2h3 I 2j + :2

J~l

= ~ h3 (2i + ~)
3

- h3 (2i + ~f

_ 2h3 \4 . (i - 1) i(2i - 1) + 2 . (i - 1) i + _~_=_U
(6 2 4 \



and hence

SMOOTH QUADRATIC SPLINES 147

a2i = h3(8i3+ 6i2+ (1/6)i + (5/12))

Similarly using Eq. (3.1) we calculate

for 1:(; i :(; M. (A8)

for 1:(; i :(; M. (A9)

From Eqs. (A8) and (A9) and the fact that a_I = ao = al = 0, we see that
ai ~ 0 for all i; since Bi(x) ~ 0 for all i and x, we immediately see that
so(x) ~ 0 for all x as required by the lemma. It remains then only to show
that so(x) :(; x3 for all x. From Eqs. (A8) and (A9) we see that

(2 'h) - 1 ( 1 ) _ h
3

(8'3 I 6'2 + 1 . , 5 -l- 8'3 6'2 1. 3)
So I -"2 a2i T a2i-1 - 2 1 T 1 "6 I T 12 I I - I - 2: I - 2;

since ](2ih) = (2ih)3 = 8iW, we have ](2ih) - 50(2ih) = h3(0/6)i +
(13/24)) ~ 0, and hence so(2ih) :(; ](2ih). Similarly we have so«2i + l)h) =

(l/2)(a2i + a2i+l) = h3(8i3+ 12i2+ (35/6)i + (5/24)); since ]«2i + 1)11) =
[(2i + 1)h]3 = h3(8i3+ 12i2+ 6i + 1), we have]«2i + l)h) - 50«2i + l)h) =
h3«1/6)i + (19/24)) ~ 0, and hence so«2i + l)h :(; f«2i + l)h). Thus,
we have shown that

so(ih) :(; f(ih) for all i. (AW)

Clearly we have so(x) :(; f(x) on [0, h] since so(x) = 0 there. On [h,2h],
so(x) = aoBo(x) + a1BI(x) + a2B2(x) = a2B2(x) = (175/12) h3B2(x) =
(175/12) h3{(1/2h2)[x - h]2} = (175/24) hex - h)2. This gives us (f - so)(h) =

h3 ~ 0, (f - so)(2h) = (17/24) h3 ~ 0, and (f - so)"(x) = 6x - (175/12)11 :(;
1211 - (175/12)h = (-31/12)h < 0 on (h,211). But whenever g(a) ~ 0,
g(b) ~ 0, and g"(x) :(; °on (a, b), we always can conclude that g(x) ~ 0 on
[a, b]. Thus we conclude in our case that (f - so)(x) ~ 0 on [h, 2h] as desired.

We now consider the interval [(2i + 1)h, (2i + 2)h] for 1 :(; i :(; M - 1;
in this interval we have so(x) = a2iB2i(X) + a2i+lB2i+l(X) + a2i+2B2Z,2(X).
From Eq. (AI0) we already have (f - so)«2i + l)h) ~ 0 and (f - so)
«2i + 2)h) ~ O. In «2i + l)h, (2i + 2)h) we have s"(x) = a2i(1/h2) +
a21+l(-2/h2) + a2i+2(1/h2) = h[(8i3+ 6i2+ (1/6)i + (5/12)) - 2(8i3+ 18i2 -+­
(23/2)i) + (8i 3 + 30i2+ (217/6)i + (175/2))] = h«40/3)i + 15). Therefore
(f - so)"(x) = 6x - h«40/3)i + 15) :(; 6(2i + 2)h - h«40/3)i + 15) =
h« -4/3)i - 3) < 0 on «2i + l)h, (2i + 2)h), and thus we conclude as above
that (f - so)(x) ~ °on [(2i + l)h, (2i + 2)h] as desired.
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All that remains is to consider the interval [(2ih, (2i + 1)h)] for 1 :(; i :(; M.
We kno.w that (f - so)((2i + t)h) = (f - so)'((2i + t)h) = 0; therefore in
this interval the Taylor's series gives (f - so)(x) = t(f - so)"((2i + t)h)
X [x - (2i + t)h]2 + HI - so)"'((2i + t)h)[x - (2i + t)h]3. For i = 1, we
have so(x) = a1B1(x) + a2B2(x) + a3B3(x) = a2B2(x) + a3B3(x), so that
s~(x) = a2(-2jh2) + a3(ljh2) = (l75j12)h3(-2jh2) + (79j2)h3(ljh2) = (31j3)h
and s~'(x) = O. The Taylor's series yields (f - so)(x) = (lj2)[6 . (5hj2) ­
(31j3)h][x - (5j2)h]2 + (Ij6)(6)[x - (5j2)h]3 = (x - (5j2)h)2[(14j3)h ­
- (x - (5j2)h)] ~ (x - (5j2)h)2[(l4j3)h - (Ij2)h] ~ 0 on (2h,3h), and
hence (f - so)(x) ~ 0 on [2ih, (2i + l)h] for i = 1. For i ~ 2, we have
so(x) = a2i-1B2i-lx) + a2iB2i(X) + a2i+1B2i+l(X), so that s;(x) = a2i_l(ljh2) +
a2i(-2jh2) + a2i+l(ljh2) = h[(8i3 -- 6i2 - (lj2)i - (3j2)) - 2(8iS + 6i2+
(lj6)i + (5j12)) + (8i3+ 18i2+ (23j2)i)] = h((32j3)i - (7j3)) ands"'(x) = O.
The Taylor's series yields (f - so)(x) = (lj2)[6(2i + (lj2))h - h((32j3)i ­
(7j3))][x - (2i + (lj2))h]2 + (lj6)(6)[x - (2i + (lj2))h]3 = [x - (2i +
(lj2))h]2{h((2j3)i + (8j3)) - [x - (2i + (lj2))h]) ~ [x - (2i + (lj2))h]2
X {h((2j3)i + (8j3)) - (hj2)} ~ 0 on (2ih, (2i + l)h), and hence (f - so)(x) ~ 0
on [2ih, (2i + l)h]. This completes the proof of Lemma 3.4.

REFERENCES

1. J. P. AUBIN, Approximation of variational inequalities, in "Functional Analysis and
Optimization," (E. R. Caianiello, Ed.), p. 7-14. Academic Press, New York, 1966.

2. C. DE BOOR, On uniform approximation by splines, J. Approximation Th. 1 (1968),
219-235.

3. C. DE BOOR, Bounding the error in spline interpolation, SIAM Rev. 16 (1974).
4. C. DE BOOR, "Quadratic spline interpolation, the sharpness of Lebesgue's inequality,

and projectors which are close to each other, Univ. of Wisconsin Math. Res. Center,
Rep. 1517, to appear.

5. W. E. BOSARGE, JR. AND O. JOHNSON, Error bounds of high order accuracy for the
state regulator problem via piecewise polynomial approximations, SIAM J. Contr.
9 (1971), 15-28.

6. W. E. BOSARGE JR., O. JOHNSON, R. McKNIGHT, AND W. TIMLAKE, The Ritz-Galerkin
procedure for nonlinear control problems, SIAM J. Numer. Anal. 10 (1973), 94--111.

7. H. G. BURCHARD, Extremal positive splines with applications, in "Approximation
Theory," (G. G. Lorentz, Ed.), Academic Press, New York, 1973.

8. M. G. Cox, An algorithm for spline interpolation, Nat. Phys. Lab. Rep. NAC27,
Teddington, Middlesex, England, 1973.

9. J. W. DANIEL, The Ritz-Galerkin method for abstract optimal control problems,
SIAM J. Contr. 11 (1973), 53-63.

10. J. W. DANIEL, Off-knot spline interpolation and constrained approximation: some
negative results, Univ. of Texas Center for Numer. Anal. Rep. CNA-88, 1974.

11. R. S. FALK, (1973), Approximation of a class of optimal control problems with order
of convergence estimates, J. Math. Anal. Appl. 44 (1973), 28--47.



SMOOTH QUADRATIC SPLINES 149

12. W. J. KAMMERER, G. W. REDDIEN, AND R. S. VARGA, Quadratic interpolatory splines,
Numer. Math. (1974).

13. M. J. MARSDEN, Quadratic spline interpolation, Bull. Amer. Math. Soc. 80 (1974),
903-906.

14. U. Mosco AND G. STRANG, One-sided approximation and variational inequalities,
Bull. Amer. Math. Soc. 80 (1974), 308-312.

15. I. J. SCHOENBERG AND A. WHITNEY, On Polya frequency functions HI, Trans. Amer.
Math. Soc. 74 (1953), 246-259.

16. M. H. SCHULTZ, "Spline Analysis," Prentice-Hall, Englewood Cliffs, New Jersey,
1973.

17. G. STRANG, The dimension of piecewise polynomial spaces, and one-sided approxi­
mation, lecture at the Dundee Conference on the Numerical Solution of Differential
Equations. Written version in the conference prooeedings, Springer Lecture Notes in
Mathematics No. 363, pp. 144-152, 1973.

18. G. STRANG, lecture at the IRIA Symposium on Computing Methods, to appear in the
symposium proceedings.

19. G. STRANG A]\.1D G. Fix, "Analysis of the Finite Element Method," Prentice Hal!,
Englewood Ciiffs, New Jersey, 1973.

20. Yu. N. SUBBOTlN, On piecewise-polynomial approximation, 1\!fal. Z. 1 (1967), 63-70;
(Russian); translated in Math. Notes 1 (1967),41-46.

21. R. S. VARGA, Error bounds for spline interpolation, in "Approximations with Special
Emphasis on Spline Functions," pp. 367-388. (I. J. Schoenberg Ed.), Academic Press,
New York, 1969.


